首页 > 财会类考试
题目内容 (请给出正确答案)
[主观题]

(1)证明:对任意的mxm矩阵A,ATA和AAT都是对称矩阵。(2)证明:对任意的n阶矩阵A,A+AT为对称矩阵,而A-AT为反称矩阵。

(1)证明:对任意的mxm矩阵A,ATA和AAT都是对称矩阵。(2)证明:对任意的n阶矩阵A,A+AT为对称矩阵,而A-AT为反称矩阵。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“(1)证明:对任意的mxm矩阵A,ATA和AAT都是对称矩阵…”相关的问题
第1题
证明:设A,B都是n阶正交方阵,则(1)|A|=1或-1(2)AT,A-1,AB也是正交方阵。(2) A正交

证明:设A,B都是n阶正交方阵,则

(1)|A|=1或-1(2)AT,A-1,AB也是正交方阵。

(2) A正交方阵,得ATA=E,由AAT=E得AT正交方阵。又A-1=AT, 故A-1正交方阵。A,B是n阶正交矩阵,故A-1=AT,B-1=BT。(AB)T(AB) =BTATAB=B-1A-1AB=E, 故AB也是正交方阵。

点击查看答案
第2题
证明:与任意的n阶矩阵可交换的矩阵必是n阶数量矩阵

点击查看答案
第3题
证明对合矩阵A(A2=I)的特征值只能是1或-1
证明对合矩阵A(A2=I)的特征值只能是1或-1

点击查看答案
第4题
设s×n矩阵A的秩为r。证明Ax=0的任意n-r个线性无关的解都是其基础解系。

点击查看答案
第5题
设x=(x1,...,xn)T是不可约对称三对角矩阵对应于特征值λ的特征向量。证明:(1)x1
设x=(x1,...,xn)T是不可约对称三对角矩阵对应于特征值λ的特征向量。证明:(1)x1

设x=(x1,...,xn)T是不可约对称三对角矩阵

对应于特征值λ的特征向量。证明:

(1)x1xn≠0;

(2)若取x1=1,则其中Pi(λ)由(6.64)定义。

点击查看答案
第6题
设矩阵,求AAT和ATA。

设矩阵,求AAT和ATA。

点击查看答案
第7题
n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。证明:(i)反对称变换关于V的

n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。

证明:

(i)反对称变换关于V的任意规范正交基的矩阵都是反对称的实矩阵(满足条件AT=-A的矩阵叫作反对称矩阵);

(ii)反之,如果线性变换σ关于V的某一规范正交基的矩阵是反对称的,那么σ一定是反对称线性变换;

(iii)反对称实矩阵的特征根或都是零,或者是纯虚数。

点击查看答案
第8题
设A是一个mxn矩阵,秩A=r,从A中任意划去m-s行与n-t列,其余元素按原来位置排成一个sxt矩阵C。证明:秩C≥r+s+t-m-n。

点击查看答案
第9题
设h为议上西数证明下列两个条件等价.(1)h为一单射(2)对任意X上的函数f,g,hof=hog蕴涵f=g

点击查看答案
第10题
证明:(1)若函数f在[a,b]上可导,且f'(x)≥m,则(2)若函数f在[a,b]上可导,且(3)对任意实数x1

证明:(1)若函数f在[a,b]上可导,且f'(x)≥m,则

(2)若函数f在[a,b]上可导,且

(3)对任意实数x1,x2,都有

点击查看答案
第11题
用对称操作的表示矩阵证明:(1)(2)(3)

用对称操作的表示矩阵证明:

(1)

(2)

(3)

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改