首页 > 职业技能鉴定
题目内容 (请给出正确答案)
[主观题]

设(1)求矩阵A的列空间和行空间的基和维数;(2)求矩阵A的零空间的基和维数;(3)求A的行空间的正

设(1)求矩阵A的列空间和行空间的基和维数;(2)求矩阵A的零空间的基和维数;(3)求A的行空间的正

设(1)求矩阵A的列空间和行空间的基和维数;(2)求矩阵A的零空间的基和维数;(3)求A的行空间的正

(1)求矩阵A的列空间和行空间的基和维数;

(2)求矩阵A的零空间的基和维数;

(3)求A的行空间的正交补的维数.

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设(1)求矩阵A的列空间和行空间的基和维数;(2)求矩阵A的…”相关的问题
第1题
设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是。求σ关于基的矩阵。设ξ=2α≇

设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是。求σ关于基

的矩阵。设ξ=2α123。求σ(ξ)关于基β1,β2,β3的坐标。

点击查看答案
第2题
设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足则

设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足

则称为V的一组正交基。如果V上的线性变换满足

则称为V的一个准正交变换。试证:

1)准正交变换是可逆的,且逆变换也是准正交变换;

2)准正交变换的乘积仍是准正交变换;

3)准正交变换的特征向量α,若满足f(α,α)≠0,则其特征值等于1或-1;

4)准正交变换在正交基下的矩阵T满足

点击查看答案
第3题
设R4的两个子空间S1和S2为求S1+S2,S1∩S2的维数与一组基.

设R4的两个子空间S1和S2

求S1+S2,S1∩S2的维数与一组基.

点击查看答案
第4题
设{α1,α2,···,αn}和{β1,β2,···,βn}是n维欧氏空间V的两个规范正交基。(

设{α1,α2,···,αn}和{β1,β2,···,βn}是n维欧氏空间V的两个规范正交基。

(i)证明:存在V的一个正交变换σ,使σ(αi)=βi,i=1,2,...,n;

(ii)如果V的一个正交变换τ使得τ(α1)=β1,那么τ(α2),···,τ(αn)所生成的子空间与由β2,···,βn所生成的子空间重合。

点击查看答案
第5题
求向量组生成的向量空间V的基和维数。

求向量组

生成的向量空间V的基和维数。

点击查看答案
第6题
令S是数域F上一切满足条件AT=A的n阶矩阵A所成的向量空间,求S的维数。

点击查看答案
第7题
(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪

(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:

(II)在(I)中哪些变换的矩阵可以在适当的基下化成对角形?在可以化成对角形的情况,写出相应的基变换的过渡矩阵T,并验算T-1AT。

点击查看答案
第8题
n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。证明:(i)反对称变换关于V的

n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。

证明:

(i)反对称变换关于V的任意规范正交基的矩阵都是反对称的实矩阵(满足条件AT=-A的矩阵叫作反对称矩阵);

(ii)反之,如果线性变换σ关于V的某一规范正交基的矩阵是反对称的,那么σ一定是反对称线性变换;

(iii)反对称实矩阵的特征根或都是零,或者是纯虚数。

点击查看答案
第9题
设σ是有限维向量空间V的一个线性变换,而W是σ的一个不变子空间,证明,如果σ有逆变换,那么W也在σ-1之下不变。

点击查看答案
第10题
设V是复数域上的n维线性空间,是V的线性变换,且证明:1)如果λ0是的一特征值,那么的不变子空

设V是复数域上的n维线性空间,是V的线性变换,且证明:

1)如果λ0的一特征值,那么的不变子空间;

2)至少有一个公共的特征向量。

点击查看答案
第11题
设V是一n维欧氏空间,α≠0是V中一固定向量,证明:1)V1={x|(x,α)=0,x∈V}是V的一子空间;2)V1的维数等于n-1。

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改